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I.  Introduction 

This Annual Scientific Report covers work performed under 

Contract No. N00014-77-C-0102, entitled Excimer Potential Curves. This 

report describes the present status of our effort to develop and implement 

semi-empirical and theoretical methods for obtaining potential curves of 

diatomic excimer systems. Our emphasis is on developing and testing 

methods which will be reasonably accurate yet will not require long lead 

times for development and will not require excessive amounts of computer 

time for production runs. The object is to enable experimentalists to 

choose or reject possible laser systems on the basis of inexpensive 

theoretical calculations rather than on the basis of expensive and time- 

consuming experiments. 

We are particularly interested in developing methods that are applicable 

to excimer systems because of the current emphasis on these systems as 

candidates for efficient, high-power visible and ultraviolet lasers. 

After consultation with A. V. Phelps and A. Gallagher of J.I.L.A., we 

have decided to concentrate initially on molecules of rare gases with 

Thallium, Indium or Gallium. 

For systems with a large number of electrons, such as Tl-R , present 

Configuration Interaction (CI) programs are inadequate and offer no hope 

of extension in the immediate future. Consequently, our effort is con- 

centrated on developing and testing semi-empirical methods that can easily 

and rapidly be applied to the excimer systems of interest. This report 
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covers our progress in three areas: 1) We have performed a configuration 

interaction calculation on GaKr , 2) We are applying the Gordon-Kim 

theory to the group IIIB-rare gas systems, 3) We zve continuing the de- 

velopment of the semi-empirical electron scattering model. 

Our work in the first area is close to completion. The CI calculation 

on GaKr was done so that we can compare the results of our approximate 

methods with accurate potential curves. GaKr was chosen as the test 

system since it is the largest of the systems we are interested in for 

which a CI calculation can be done. The GaKr curves have been extrapolated 

to give curves for InKr and TIKr ; however, these extrapolation are 

very approximate. In particular, the positions and depths of the potential 

wells for InKr and TIKr are not given accurately. These potential 

curves have been used to predict the spontaneous emission and absorption 

coefficients for GaKr , InKr and TiKr . The details of this work are 

given in Section II, which is a rough draft of a paper on this work that 

will be submitted for publication. 

Although at the time the proposal was written, applications of the 

Gordon-Kim electron gas theory to open shell systems had failed to give 

reasonable results, recent applications of the G-K theory to open shell - 

closed shell interactions have been successful (M. J. Clugston and R. G. 

Gordon, JCP 6rä, 239 (1977)). Consequently, we are now investigating the 

possibility of using this method to obtain approximate potential curves 

for GaR . Our preliminary calculations on GaKr are described in 

Section III. 

-^-^ 



The basic theory and computational method for the electron scattering 

model are described in Section IV. We are proceeding with this approach, 

in addition to the Gordon-Kim theory, because the electron-scattering model 

should provide a more accurate description of atomic distortion and should 

be applicable to a wider range of molecules than the G-K theory. 

^"^=_i.;:-. "^v^jl« _^___m___^_^____ —* 



II. Electronic States of GaKr : Ab ün_tio calculations of a prototype 

for TIKr 

The work in this section was performed in conjunction with Thorn H. 

Dunning, Jr. of Los Alamos Scientific Laboratory and is a rough draft of 

a paper that will be submitted for publication. 

 --^^ '-■■ ^a^fF^s^^nr—-^^--^iv^Tfy^, p"'"' 
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Electronic States of   GaKr  : Ab initio calculations of a prototype for 

TlKr 

I.      Introduction 

Among the metal-rare gas eximers, the    TIXe    system is believed to 

be an excellent candidate for an efficient visible, high power, tunable 

laser.1    Since ab initio calculations on this system are beyond the scope 

of present cDmputer programs, we present here a configuration interaction 

(CI) calculation on   GaKr , which is the largest group IIIB-rare gas system 

for which CI   calculations can be done.    We use the calculated    GaKr    curves 

to model  the potential  curves for     InKr    and    TlKr .    Although our model 

does not allow further extrapolation from   TlKr    to    TIXe  ,  it is hoped 

that these calculations will yield some insight into the properties of the 

TIXe    eximer.    In addition, Gallagher    has recently raised the possibility 

of using    GaXe    as a laser if the   Ga    can be obtained from dissociation 

of    GaL,  .    Consequently the    GaKr   curves should also be of intrinsic 

interest. 

In this paper, the CI  calculations on    GaKr    are presented along with 

the model  calculations on    InKr    and    TlKr .    These potential  curves are 

used as the basis of a classical  calculation of the emission   end absorption 

coefficients for these systems. 

ififf-nif ""flmttaMitiin :Mi ^Ä^4 
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II. Details of the calculetion 

A.  Basis set 

The calculations use (lAsllpöcl) primitive Gaussian bases for gallium 

and krypton3 as a starting point. The core orbitals (ls,2s,2p,3s,3p) are 

sincly contracted to the Hartree-Fock atomic orbitals while the valence 

orbitals (4s and 4p) and the 3d orbitals are each described by two contracted 

functions(see Table I). The resulting (5s4p2d/5s4p2d) contracted bases 

are constructed using the general contraction scheme of Raffenetti. 

These basis sets are extended tu include polarisation by adding two 

diffuse s functions (5s and Bs') and a diffuse p function (5p) to 

describe the lowest Rydburg orbitals. The exponents for these orbitals 

(c(5s) = .026, dSs1) = .011, C(5p) =.01) are obtained from atomic calcu- 

lations on the excited states of Ga . The final basis set thus consists 

of a (16sl2p5d) primitive basis contracted to [7s5p2d] for Ga and a 

(14sllp6d) primitive basis contracted to [534p2d] for Kr . 

B.  SCF calculation 

on the 

The starting point for the CI calculation is a Hartree-Fock calculation 

2 + state 

13a214a277r415a216a 
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The inner core nclecularOrbitals  (twelve a  , twelve n and four 5) 

are held doubly occupied from this point on and are replaced by the 

rigorous nonlocal  Hartree-Fock potential. 

'core    "    V. I       (2Ji - Ki) i=core 

With the core orbitals removed from consideration, it is convenient 

to renumber the valence orbitals so that the Hartree-Tock configuration 

is written as 

, 2« 2, 2. , 4 

At large R the correspondence for the valence orbitals is 

lo ■* 4s Kr 

2o -> 4pKr 

3o -> 4sGa 

4o +   4pGa 

In -»• 4pKr 

lliilliiiiiiii lilffilfll 



In addition to the valence Orbitals, nine o , six TT and four 6 

virtual orbitals are used in the CI calculations. The lowest virtual orbitals 

(5o, 60, 7a, 27T, 3TI), which correspond to the Ga 5s, Bs', 4p and 5p 

atomic orbitals for large internuclear separations, are obtained by the 

improved virtual orbital (IVO) procedure.  The IVO orbitals are obtained 

by removing the electron from the 4o (valence) orbital of the above 

configuration and calculating the virtual orbitals for the (N-l)-electron 

Hamiltonian. 

CI calculations 

Full polarization CI (POL-CI) calculations which provide a balanced 

description of all states of the 4s-4p manifold were carried out. A set 

of reference configurations was chosen (see Table II) to describe the dominant 

configurations for the 1      and  n states of the molecule and the 

I      state of the ion. 

The full POL-CI calculations include all (1+2) electron excitations 

relative to each reference configuration subject to the restrictions that 

no more than one electron occupy the Rydberg 5o orbital and no more than 

one electron occupy any virtual orbital (60, Zv  etc.). This results in 

2 + 764 spatial and 2314 spin configurations for the l     states, 556 spatial 

and 1565 spin configurations for the ^11 states and 368 spatial and 558 

spin configurations for the 1    state. A total of 15a , 14TT and 26 

occupied and virtual orbitals are used in the POL-CI calculations. 

■ - - ■ -  
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III. Results for GaKr 

A.  Electronic states without spin-orbit coupling 

2        1 
The interaction of ground state Ga ( S) and Kr { S) atoms gives 

2        2 + 
rise to a  n and a l      state as shown schematically in Fig. 1, In the 

2 + T.      state the occupied 4p Ga orbital is oriented along the molecular 

2 2 + 
axis while in the  n state it is perpendicular to the axis. The z 

state should be essentially repulsive inside the van der Waals region 

because of the unfavorable interaction of the 4pa orbitals on Ga and 

2 
Kr  The  n state does not have this repulsive interaction so it should 

* 2 +1 
be more attractive. The interaction of excited Ga ( S) and ionic Ga ( S) 

2 +      1 + 
atoms with ground state Kr gives rise to a i      and a  E  state 

respectively. In both cases these states are expected to be somewhat 

attractive. 



The potential energy curves (Fij. 2 and Table III) from the POL-CI 

calculations generally follow the behavior predicted from these theoretical 

considerations. These calculations are not, however, designed to treat 

long-range dispersion forces. Many excitations which contribute to a 

Cgf  attraction are not included in the wavefunction. For these reasons, 

one would expect deeper wells in all the potential curves including the 

2 
two lowest, generally repulsive, states. As predicted,the 1 n state 

2 + 2 + 
is less repulsive than the 1 E  state. The bound excited sl-ate 2 i 

has a minima at 6.36 a.u. about 3.0 eV above the ground state curve, while 

the minima in the ion curve is at 6.28 a.u. and 5.6 eV above the ground 

state. The well dej hs are compared with those obtained by Gallagher 

in Table IV, and as expected, Gallagher's wells are deeper. 

11 

The dipole moments of these states and the transitior. moments between 

i     and the lower states have also been calculated and are given in 

Table V and Figs. 3 and 4. 



3       Electronic states including spin-orbit coupling 

A complete treatment of the electronic states of   GaKr   must include 

the effects of spin-orbit coupling.    The states considered here, which 

dissociate to the closed-shell  ground state of    Kr    and an open-shell state 

of    Ga    or    Ga+    are influenced only by     •>   spin-orbit matrix e.ements of 

the open-shell atom. 

Following the procedure used previously,   »  »  '      we have adopted a 

simple model  for including the effects of spin-orbit coupling on the 

calculated potential energy curves and wavefunctions.    The experimental 

spin-orbit parameters for the open-shell  atom (Ga    and later    In  , Tl) are 

used to determine the matrix elements of the spin-orbit interaction,    Hso  , 

coupling the molecular states at infinite separation and these matrix 

elements are assumed to be independent of internuclear distance.    The 

resulting spin-orbit matrix    H        is added to the diagonal matrix of so 

'lectronic energies H ,     (R) = 6..E-(R)   : a elecx  /        ij  i     ' 

H(R)  = H ,     (R) + H elecx  ' so 

and the total matrix H is then diagonalized at each internuclear distance 

R . Thus, in addition to the assumption tnat the spin-orbit matrix elements 

do not change as functions of R , this model assumes that only one-center 

terms need be included so that only the spin-orbit coupling on Ga is 

important. We would expect this procedure to provide reasonable results 

to the extent that the molecular states retain the identity of the atonrc 

-♦*» 



states from which they are formed. The spin-orbit matrices are given 

in Table VI along with the atonic parameters used in these calculations. 

states 
31 C MC 

have energies of +x and -2X respectively. 

2 2 
The parameter x is chosen so that the atomic  Po/o ancl  p 

We shall label the molecular states using the convention of Hund's 

case (c) where n , the projection of total angular momentum along the 

molecular axis, is the only good quantum number, n is defined as 

ii = A + S , where A and S  are the orbital and spin angular momentum 

2 + projection, respectively. The molecular i     states have only a 
2 

ü  = 1/2 component, while the  n states yield a fi = 3/2 and ü  = 1/2 

state. The states in the n representation are labeled according to 

increasing energy by a Roman numeral. So the ü  = 1/2 states are designated 

as 11/2,11 1/2  and the n = 3/2 states are I 3/2 , II 3/2 . 

The coupled states are expressed as follows: 

n/2> = CJI2E+>   + cjrn> 
^ n 

IIl/2> = -cn|l
2E+> + cz|l

2n> 

I 3/2> = |l2n> 

The spin-orbit coefficient C« and C  are given in Table VII. The 

potential curves and transition moments for GaKr including spin-orbit 

coupling are given in Table VIII and Figs. 5 and 6. 

 mum ■ .   .     m I -fn-ÜfflHi 
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IV. Extrapolations to InKr and TIKr 

The potential curves for InKr and TIKr are modeled on the 

GaKr curves. The lowest excitation energies and the ionization potentials 

for the series Ga , In , Tl are given in Table IX. As can be seen, this 

series does not form a steady progression. In has a lower ionization 

potential and lower excitation energies than Ga , as expected for a 

heavier atom. However, Tl has a higher ionization potential and higher 

excitation energies. This is due in part to the presence of a filled 

12 
4f shell in Tl and the larger spin-orbit effects.   These effects 

should be considered when extrapolating the GaKr curves to InKr and 

TIKr. 

To simulate    InKr    and   TIKr  , the experimental spin-orbit parameters 

for    In    and    Tl    are used to couple the    GaKr    curves.    The curves are 

also shifted to give the correct atomic excitation energies at    R = » 

(see Table IX).    This procedure should give at best a qualitative description 

of states of    InKr    and   TIKr  , since the non-spin-orbit coupled states 

are expected to have quantitatively different well depths and equilibrium 

separations. 

The effect of the increasing spin-orbit perturbation in going from 

Ga    to    In    and   Tl    is   evident  in the calculated curves which are given 

in Figs.  7 and 8.    Only the well depths and positions for the    I 1/2   and 

II 1/2   states are affected by the spin-orbit coupling.    The other states 



10 

are the same as those for GaKr except that they have the correct 

asymptotic spacing. 

The mixing parameters from the spin-orbit coupling calculations for 

TIKr are also used as the coefficients of the GaKr wave function to 

estimate the transition moments for this system. The TIKr transition 

moments are given in Table X and Fig. 9. 

-ri* -.:! 
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V. Absorption and stimulated emission coefficients for possible laser transitions 

The interest in tie gruup 11 IB-rare gas systems arises from the possibility 

of their use as visible laser systems. In order to judge their usefulness as 

lasers it is convenient to calculate the absorption kv(t) and stimulated 

emission g (T) coefficients. Obtaining quantum-mechanical results for these 

quantities would require a complex calculation which would be inconsistent with 

the extrapolations used to obtain the InKr and TIKr curves. Consequently, 

we have used Gallagher's analysis [17], which is based on the classical 

Frank-Condon principle. 

In order to obtain g  and k , the CI curves are first fit by Morse 

potentials. The parameters for these Morse potentials are given in Table XI. 

These parameters can then be used in Gallagher's equations, alon^ with the 

atomic transition rate, to obtain absorption and stimulated emission coefficients 

for pressure and excitation conditions of interest to experimentalists. We 

have calculated these coefficients for two different types of conditions. 

The high temperature results correspond to the case where the concentration 

of the metal is obtained from the vapor pressure of the metal itself, while 

the low temperature results correspond to obtaining the required concentration 

of the metal from vaporization of MI, (M = Ga, In, or Tl). This latter 

condition has been suggested by Gallagher as a possible means of obtaining 

high concentrations of the metal at low temperatures. In both cases the 

.20,^3 ,_ ^      ^16^3  orM 2n^j =  1i5[M 2F^ 

and 2 x 10 /cm = [M S,^ . The resulting absorption and stimulated 

densities used are 10cu/cmJ for Kr , 10'u/cm'J = 3[M 'P-i/ol = 1-5[M ^Po/ol 

IIIM"*"" »    'iMMMffc.^.      '    ^niM '     ^ *£.:■■* 



12 

emission coefficients for   GaKr , InKr   and   TIKr   are rjiven in Figures 10 

to 15. 

■r-lfrfWiit-r1 T^r 
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Table I. Gaussian exponents and contraction coefficients 

Exponents Contraction coefficients 

Gallium atom 

Is 

457600. .000222 
68470. .001732 
15590. .008952 
4450. .035874 
1472. .114000 
541.3 .274138 
214.8 .414793 
88.81 .275395 
27.18 .029561 
11.54 -.006815 
3.303 .002253 
1.334 -.001017 

.1947 .000251 

.07158 0.0 

2s 

-.000069 
-.000535 
-.002814 
-.011275 
-.038495 
-.100714 
-.211832 
-.175448 

.479840 

.634145 

.069592 
-.012299 

.002774 
0.0 

3s 

.000026 

.000205 

.001070 

.004337 

.014707 

.039748 

.084475 

.079654 
-.291821 
-.527118 

.583707 

.674103 

.028077 
0.0 

4 s 

-.000006 
-.000048 
-.000247 
-.001007 
-.003399 
-.009279 
-.019587 
-.019104 

.072753 

.134137 
-.181778 
-.358241 

.615164 
0.0 

43' 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 

,026 
,011 

5s 

1.0 
0.0 

5s' 

3274. 
765.4 
241.6 
89.39 
36.36 
15.60 
6.472 
2.748 
1.090 

.2202 

.06130 
.01 

2p 
.001513 
.013070 
.067263 
.219542 
.421107 
.376515 
.089425 

-.000502 
.001761 

-.000247 
0.0 
0.0 

3p 
-.000576 
-.004981 
-.026421 
-.089529 
-.186734 
-.144494 

.258956 

.570187 

.325305 

.016563 
0.0 
CO 

4p 

.000094 

.000800 

.004337 

.014443 

.031377 

.021501 
-.046233 
-.125293 
-.045636 

.452811 
0.0 
0.0 

4p1 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
0.0 

5p 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 

3d 4d 
59.66 .031949 0.0 
17.10 .163546 0.0 
6.030 .367457 0.0 
2.171 .456851 0.0 

.6844 .305161 0.0 

.160 0.0 1.0 

if-'       l-iT-TTTT- .«*«» »I.lt lf..> 
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Table I. Gaussian exponents and contraction coefficients 

Exponents Contraction coefficients 

Krypton atom 

Is 2s 3s 4s 4s, 

605700. .000231 -.000073 .000029 -.000009 0.0 
90300. .001755 -.000551 .000221 -.000070 0.0 
20920. .009076 -.002894 .001159 -.000369 0.0 
5889. .036990 -.011834 .004781 -.001522 0.0 
1950. .116154 -.039826 .016056 -.005118 0.0 
718.2 .278401 -.104801 .043454 -.013886 0.0 
285.4 .415746 -.217093 .091899 -.029537 0.0 
118.6 .267204 -.175562 .083789 .027309 0.0 
38.16 .027870 .471395 -.303023 .103498 0.0 
16.45 -.005998 .636794 -.570620 .208810 0.0 
5.211 .002217 .082255 .501751 -.235737 0.0 

i 

2.291 -.001092 -.014138 .760483 -.553570 CO 
.4837 .000305 .003289 .044857 .701123 0.0 
.1855 0.0 0.0 0.0 0.0 1.0 

2p 3p 4p 4P' 

4678. .001392 -.000559 .000156 0.0 
1120. .011665 -.004777 .001286 0.0 
357.1 .060858 -.025631 .007059 0.0 
131.4 .21n040 -.092159 .024990 0.0 
52.86 .42(000 -.200936 .056870 0.0 
22.70 .383515 -.160784 .040225 0.0 
9.547 .097383 .267789 -.084756 0.0 
4.167 -.001087 .585908 -.240291 0.0 
1.811 .002209 .291397 -.038636 0.0 
.5337 -.000509 .015484 .599154 0.0 
.1654 0.0 0.0 0.0 1.0 

3d 4d 

125.6 .019168 0.0 
33.31 .125638 0.0 
12.15 .366069 0.0 
4.350 .502482 0.0 
1.494 .264377 0.0 
.35 0.0 1.0 
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Table II.  Reference Configurations^ 

2 + I    states 

I 

2 

3 

1    29   2T   2/l    i    4 
la Co 3rj 4alTr 

1   2?   2^   2R   1   4 
la c-a Ja bahr 

la 2a 3a Golir 

TI states 

la 2c;  3a  lir 2TT 

1    29    2T   21    4-3 la i^a 3a   I IT  3Tr 

1J:+ state (GaKrf) 

i  2o 2-3 
2
1  4 la 2a  3a  lir 

ifrrinn.rin „-fm-iääL^   JW. l^nkuaiMMOHÖ^BläUi 
•^♦k.     J 
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Table III. POL-CI calculations on the low-lying states of GaKr 
and the ground state of GaKr+ . All energies are 
relative to -4674. hartrees. 

R lV 2V A lV 

00 -1.200042 -1.095050 -1.198917 -0.992860 
15.00 -1.200121 -1.095025 -1.198978 -0.993044 
10.00 -1.200290 -1.094061 -1.199328 -0.994018 
8.00 -1.198650 -1.094202 -1.200204 -0.996703 
7.00 -1.193963 -1.095454 -1.200450 -0.999505 
6.00 -1.179381 -1.096768 -1.197718 -1.002018 
5.00 -1.135164 -1.088552 -1.179245 -0.992868 
4.50 -1.086883 -1.064404 -1.148099 -0.967583 
4.00 -1.018697 -0.992381 -1.079327 -0.906827 
3.75 -0.968656 -0.933786 -1.025394 -0.856247 
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Table IV. Potential well depths 

Mole -  State 
cule 

CI 

R     AE:(eV) 

Morse Fit 

R    AE(eV) 

Gallagher 

R     AE(eV) 

GaKr I1/2(X1/2) 

II1/2{A1/2) MO 

III1/2(B^.1/2)   6.36 

^..018 7.55 .021 

^.040 7.18 .040 

.006 10.15 .00642 

.064 6.26 .080 

GaKr' I 6.28    .26     5.95    .252 

InKr I 

I 

1/2 

3/2 

II 1/2 

III 1/2 

'vS V013    7.86    .00778 

MO     ^.006    9.98    .0064 

TIKr I 

I 
1/2 

3/2 

II 1/2 

III 1/2 

^8     ^.010    8.5 ,012 

MO     ^.006    9.88    .064 

7.01 

6.58 

.024 

.062 

6.09    .107 

same as GaKr 

m MM___ i__: -_ 
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Table V.    Dipole and transition moments for the low-lying states of    GaKr 

„2 ,2 + o2 + ,2 + „2 -,2 + .2 ~2     +      ,2r,+ R x n ri 2 Z ri -x n z i -x n 2 E -IE 

15.00 0.00598 0.00156 0.07558 0.00183 -1.29167 -1.31011 
10.00 0.02605 0.02048 0.56872 0.01631 -1.28976 -1  29762 
8.00 0.09152 0.14168 0.89914 0.04761 -1.27767 -1.23098 
7.00 0.18861 0.30443 0.95672 0.07894 -1.26770 -1.19024 
6.00 0.41543 0.62092 0.81671 0.11663 -1.25536 -1.18926 
5.00 0.90382 1.20144 0.45889 0.09916 -1.23487 -1.44020 
4.50 1.24437 0.96841 1.19373 -0.13653 -1.20897 -2.06755 
4.00 1.64453 -1.27575 5.47300 -0.84619 -0.86801 -  .30554 
3.75 1.88349 -1.13125 6.45764 -0.90367 -0.78769 .40946 

■   - 
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Table VI.    Quantities for spin-orbit matrices 

Q = 1/2 2E+ 

V 0 

h /FA 

2n 

/Tx 

n = 3/2 

+\ 

Ga A - .001255 au 

In A = .00336 

Tl A = .011835 

HiHi mi HT'iiTMiiMtiTCWriiiiir 
x »w   4 
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Table VII.      Spin-orbit coefficients for the   ü = 1/2    states 

R(a0) Jn 

GaKr 

InKr 

TIKr 

3.75000 .99955 .02998 
4.00000 .99960 .02813 
4.50000 .99961 .02787 
5.00000 .99927 .03811 
6.00000 .99641 .08468 
7.00000 .98199 .18892 
8.00000 .93379 .35782 
m.oonoo .82915 .55902 
15.00000 .81649 .57736 

3.75000 .99704 .07690 
4.00000 .99738 .07238 
4.5n:.oo .99742 .07175 
5.OUOOO .99534 .09644 
6.00000 .98063 .19588 
7.00000 .93712 .34900 
8.00000 .87677 .48091 
10.00000 .82132 .57047 
15.00000 .81649 .57736 

3.75000 .97505 .22197 
4.00000 .97731 .21180 
4.50000 .97763 .21034 
5.00000 .96502 .26219 
6.000C0 .91737 .39803 
7.00000 .86679 .49867 
8.00000 .83612 .54854 
10.00000 .81788 .57540 
15.00000 .81649 .57736 

■* i*»   4 
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Table VIII. Rydberg-valcnce transition moments in GaKr 

(with spin-orbit corrections) 

III 1/2 - I 1/2 III 1/2 - II 1/2 III 1/2 - I 3/2 

R Z (X,Y) Z (X.Y) (X.Y) 

15.00 -0.75641 0.74574 -1.06969 -0.52733 -0.91335 
10.00 -0.72540 0.75618 -1.0759? -0.50983 -0.91200 
8.00 -0.44047 0.84363 -1.14948 -0.32327 -0.90345 
7.00 -0.22486 0.88026 -1.16880 -0.16935 -0.89640 
6.00 -0.10071 0.88449 -1.18499 -0.07517 -0.88767 
5.00 -0.05489 0.87255 -1.43915 -0.03328 -0.87318 
4.50 -0.05762 0.85454 -2.06674 -0.02383 -0.85487 
4.00 -0.00859 0.61353 -0.30542 -0.01727 -0.61378 

-^ t»«  4 
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Table IX. Atomic states of 6a , In , and Tl 

State Ca 

cm'  eV 

Excitation Energy 

In 

cm'  eV 

Tl 

cm*  eV 

P 
1/2 

0.0  0.0 0.0  0.0 0.0  0.0 

3/2 826.24  .10241    2212.56   .274228 7792.7   .965840 

'1/2 24788.58 3.07234   24372.87  3.020814   26477.5  3.281665 

I.P. 48380.   5.9963   46669.93  5.784348   49264.2  6.105886 

^_^_1  ..^_  
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Table X.    Rydberg-to-valence transition moments in model    TIKr 

(with spin-orbit corrections) 

III 1/2 - I 1/2 III 1/2 - II 1/2 III 1/2 - I 3/2 

R Z (X.Y) Z (X.Y) (X.Y) 

15.00 -0.75641 0.74574 -1.06969 -0.52733 -0.91335 
10.00 -0.74665 0.74590 -1.06130 -0.52476 -0.91200 
8.00 -0.67524 0.75539 -1.02925 -0.49558 -0.90345 
7.00 -0.59354 0.77699 -1.03169 -0.44701 -0.89640 
6.00 -0.47336 0.81433 -1.09099 -0.35332 -0.88767 
5.00 -0.37761 0.84264 -1.38982 -0.22894 -0.87318 
4.50 -0.43489 0.83575 -2.02130 -0.17981 -0.85487 
4.00 -0.06471 0.59985 -0.29861 -0.13000 -0.61378 

 •- J;  
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Table XI.    Morse fitting parameters: 

V(R) - VH  = D [u2 - 2u]    where    u = exp [B(R    - R)] e e 

Molecule State R (aj B(a„"1) e   o' v o    ' 

GaKr 

InKr 

TIKr 

1/2 .000772 7.56 .724 

3/2 .00147 7.19 .722 

Il/2 
.000625 10.14 .471 

IIT/O .00295 6.26 .853 

1/2 
a 

3/2 

Il/2 

II 1/2 

1/2 

3/2° 

I 1/2 

II 1/2 

.000286 

.000474 

,00439 

,000408 

7.86 

10.24 

8.52 

10.12 

.817 

,483 

.633 

.502 

Same as for    GaKr 

f TiriwimuT i 
"*%fc» 
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Fig.  1.    Orbital diagrams for the electronic states of    Ga + Kr   and Ga    + Kr. 
The lobes and circles represent the in-plane and out-of-plane    p   orbitals; 
the dashed circle denotes the Rydbarg orbital. 
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Figure 2. 

THE  LOW-LYING STATES  OF GaKr AND 
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Figure 3. 

DIPOLE MOMENTS OF THE LOW-LYING STATES OF GAKR 
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Figure 4. 

DIPOLE TRANSITION   MOMENTS AMONG 
THE   LOW-LYING  STATES  OF GaKr 
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Figure 5. 

THE  LOW-LYING STATES OF GaKr AND 
GQKr+ WITH   SPIN-ORBIT  CORRECTIONS 
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Figure 6. 

DIPOLE   TRANSITION   MOMENTS AMONG 
THE   LOW-LYINH   STATES  OF  GaKr WITH 

SPIN-ORBIT CORRECTIONS 
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Figure 7. 

THE  LOW-LYING STATES OF InKr AND 
InKr+ WITH   SPIN-ORBIT  CORRECTIONS 
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Figure 8. 

THE   LOW-LYING  STATES  OF TIKr AND 
TIKr+  WITH   SPIN-ORBIT  CORRECTIONS 
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Figure 9. 

DIPOLE TRANSITION    MOMENTS  CONNECTING 
THE   LOW-LYING   STATES  OF   TIKr WITH 

SPIN-ORBIT  CORRECTIONS 
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Figure 10. 
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Figure  11. 
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Figure 12. 

COEFFICIENT (cm-') 
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III. Application of the Gordon-Kim theoiy to the group IIIB-rare gas systems 

In recent years, the electron gas methods developed by Gaydaenko 

and Nikulin [1], and Gordon and Kim [2] and modified by Rae [3] and Cohen 

and Pack [4] have proved successful in calculating the interaction energies 

of pairs of closed shell atoms or ions [1-5], of atom-molecule systems[6-7], 

of molecule-molecule systems [8], and, recently, of systems with one open 

shell atom [9]. These interaction energies are much more accurate than the 

simplicity of the Gordon-Kim (GK) method would lead one to expect. 

The recent success of the GK method in calculating closed shell - open 

shell interaction energies has prompted us to use this method to calculate 

the interaction of group 11 IB-noble gas pairs. The GK theory has been 

most successful in cases where the interaction is non-covalent and where 

the atoms are relatively undistorted. For these reasons, systems such as 

GaKr would seem to be ideal candidates for a GK calculation. 

The electron-gas theory is briefly reviewed in part A, and our 

preliminary results on GaKr are given in part B. 

A. The electron gas method 

The method we have used is that of Gordon and Kim [2] as modified by 

Cohen and Pack [4]. A more detailed description of the theory is available 

in these two papers. Briefly the GK theory approximates the intermolecnlar 

i.,^— rriTWiiaiir'.iiiiiLCJ—C 
•» rt 



potential V(R) at the distance R by 

V{R) ^ VGK(R) = V^(R) + V^rr(R) 

where 

V. + V + V k  c  e 

and these three terms represent the kinetic, Coulomb and exchange inter- 

action energies, respectively. To calculate these interaction energies, 

the electronic charge density p is approximated by the sum of the atomic 

charge densities. 

pa + pb • 

With this approximation, the Coulomb interaction can be calculated directly, 

but the other terms are all estimated by the formulas for the energy density 

of a unifotm electron gas [4]. An additional modification [3,4] is made 

to the exchange energy to avoid self-exchange contributions. 

B. Calculations 

We have modified the molecule-molecule GK interaction program of 

Parker, Snow and Pack [8], which allows for non-spherical potentials, to 

calculate interaction energies for closed shell - open shell atomic pairs. 

The density of the open shell atom, in this case Ga , is divided into 

-«»K« 4 



the spherically symmetric core density plus the valence density. For Ga 

2 1 
in the ground state (4s 4p ), the valence density Is constrained to be in 

a p orbital directed along the internuclear axis, to form a I   molecular 

state, or perpendicular to it to form a n state. 

In order to expedite the evaluation of integrals, the atomic density 

is expanded in a set of Slater basis functions with the coefficients determined 

by a least-squares fit [4]. The basis set expansions for the density are 

then read into the GK program which calculates the interaction energy 

by three-dimensional numerical quadriture. 

We have obtained numerically tabulated, relativistic Hartree-Fock 

densities for the group IIIB and rare &as atoms from Joseph Mann [10]. 

2 1     2 1 
The densities of the 4s 4p and 4s 5s states of Ga and the ground state 

of Kr were fit with small sets of Slater functions. At this time the 

fit of the basis set expansion is not very good (^ 10%). 

The basis set expansions obtained from this fitting procedure were 

then used to calculate the GK interaction energies. Because the fitting 

procedure does not normalize the density, the inaccuracy of the present 

expansions results in a spurious Coulomb repulsion between the two atoms. 

We hope that improving the basis set fit will correct this error. 



The GK potential curves are compared with the CI results (see Section II) 

in Figures 1-3. The energies are plott?d with respect to the asymptotic 

energy cf each state. The curve labeled GKR includes Rae's correction while 

the GK curve is the unmodified GK theory. The GKR curve for the 1 E state 

agrees remarkably well with the CI result. Unfortunately, the agreement for 

2     2 + 
both the 1 n and 2 E states are not as good. Specifically the depths and 

positions of the potential wells are not predicted accurately. We are 

currently working on improving the basi^, set fit and thereby the interaction 

energies. 

mMMjarnxmrmmtm'-'Wifviii  ':._.■ __.._;!__ 
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IV. The Electron Scattering Model 

A. Introduction 

This section describes the theoretical basis of our calculations 

using the electron scattering model. For an excimer system AB , where 

A is a closed-shell system, most of the states of interest correspond 

to the asymptotic situation where B is excited but A is in its ground 

state. Fundamentally, what the electron scattering theory says is that any 

charged particle in  B sees a potential (?;.) , due to the closed-shell 

system A , which is the same as if the charged particle were scattered 

off of A . This scattering potential is corrected for the fact that A 

is "de-polarised" relative to the scattering problem, due to the presence 

of the nucleus and other electrons of B . This theory is based on the 

model interaction potentials and response functions that arise out of the 

many body theory (using Schwinger Functional Derivatives) and that have 

been applied to scattering problems [1]. 

In part B the basic equations are presented and pos, ble methods 

for calculating the interaction energy are discussed in part C. The use 

of semiempirical forms for the effective notentials are discussed in 

part D. 

**» 4 
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3. The Basic Equations 

Using many-body field theoretic methods it has been shown that the 

change in energy, e , resulting from the addition of an electron to a 

closed-shell reference system (referred to hero as A) is given by the one- 

particle Dyson equation 

T(rH(r) +/dr• ):A(r;r' :cH(r) = ^(r) (1) 

where. T is the kinetic energy operator and ^ is the Dyson amplituoe 

with r and r1 being space-spin coordinates. Thus, the problem reduces 

to an effective one-particle problem in which this particle experiences 

an effective potential, T.    , which represents all the other particles 

collectively, taking into account all effects such as polarization, 

correlation and exchange, etc. As might be expected, the cost of this 

simple formulation is that E  is an extremely complicated entity which 

is both nonlocal and energy dependent and which cannot rigorously be 

brought into closed form. However, it has been possible to develop 

_  ,Li: .—...   .  ..K   4 
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excellent clostii form approximations to this potential which are based on 

well founded physical concepts. Most notable among these is the Random 

Phase Approximation (RPA) potential, ERp. , which has been very successfully 

used : calculating the ionization potentials, excitation energies, 

oscillator strengtns, and elastic -scattering phase shifts for He [2]. 

Typ.    has also been used to accurately calculate the ionization and ex- 

citation energies of Li [3]. Moreover, it has been shown that this ab 

im"tip potential encompasses other phenomenologically derived semiempirical 

potentials which have bt n used by other workers with great success [4]. 

It has also been recently demonstrated that by applying the same many- 

body techniques to the problem of two electrons added to a closed-shell 

reference system (A) one obtains an effective two-particle equation for 

the resulting change in energy f5] 

CZ^r).   /dr.EA(ri;r':e)) + ]7^rr+   /d^ •dr2'W
A(r1 ^^r'r^X^ ,r2) 

^(r^) , (2) 

where in addition to the individual one-particle potentials there now 
A 

appears a two-partic^. effective potential, W , which represents how the 

presence of one particK affacts the potential seen I the other particle 

and which reflects the fact that system A can act as a dielectric medium 

to shield the Coulombic interaction between two charged particles. As 

with z , this potential cannot be rigorously brought into closed form. 

-■■ ^ J 
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However, an excellent ab initio closed form approximation to this potential 

can be obtained with the Random Phase Approximation, WRpA , which is completely 

compatible with the similarly obtained one-particle potential, J:RpA . 

If we now proceed to the case of adding m electrons to our closed- 

shell reference system it follows by induction and can be proven formally 

that the change in energy is given by 

[Z^-V ^/d.: lA(r,;r::c)) . ^(^ - fa  ^j «Vj^.r^)) 

K  fdrl dr; dr' UA(r. ,r,,rk;r; .rUr-':e) + ... +/dr j ... df/lr,.. .r^rj.. .r-c)] »(r,.. .rn 
i>j>k ^    J        J      J 

= Ev(r1...rni) , (3) 

where our notation for three-particle and higher potentials is obvious. 

In the above we only considered the addition of electrons to our closed- 

shell reference system A. However, we can also add nuclei as well; the only 

difference being that when acting on a nuclear coordinate all potential 

terms involving electron exchange must of course vanish. Since this can 

be trivially accomplished by choosing an appropriate (' ificial) nuclear 

spin coordinate, we can immediately generalize (3) to include Hoth nuclei 

and electrons by allowing the particles to carry different charges, z , 

(where z = -1 for an electron) to give 

+ 

th»  4 
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+ ...]l'(r1...rm) = ^(rr..rm) (4) 

We of course cannot solve (4) since the potentials involved cannot be written 

in closed form. However, we can replace these potentials by their RPA 

approximates which are in closed form. Furthermore, realizing that we are 

deriving a theory for intermolecular forces which is essentially perturbative 

in nature, we will now assume that all three-particle and higher potentials 

can be neglected so that our equation becomes simply 

[.Emr.) - zi Jdr! E (r.;r::e)) + £ z.z .(^   + Jdr.dr.wA(r.,,. ;r. )r. :e))] ^ <<g 

^{rv..rm) (5) 

Since our interest lies in the calculation of potential energy surfaces, 

what we really want is an equation for the change in energy when m 

electrons and m  nuclei are added to A with these nuclei held fixed 

at specific points in space (which we will refer to collectively as R 

with the actual spatial coordinate of nuclei i being R. ). That is, 

we want to be able to separate electronic motion from nuclear motion so 

that this quantity,<f(R) , will be the total potential experienced by 

these nuclei and will satisfy the equation 

LETCRJ +<r(R)T X(R) = eX(R) 
i=l  1 (6) 

_»*? fL 
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where X(R) is a function of the nuclear coordinates only. As it 

stands, (5) precludes such a separation because o. the energy dependence 

of the potentials involved. To overcome this problem we will now assume 

that for those solutions to (5) we seek this energy dependence is not 

strong  Furthermore, we will also assume that the response of A to the 

added particles is instantaneous. In this way we can replace the non- 

adiabatic energy dependent potentials in (5) with their hermitian energy 

independent adiabatic approximates such as those given in ref. 5. With 

these substitutions (5) does become separable, and by taking 

^»V'-O = IX.(RK.(r1...r ) ! <^ V'm rr-'TT--'me ^ = 6., 
I1 J 1J 

(7) 

wnere f(r^...r ) is a function of only the electronic coordinates 

we find that <f (R) is given by 

IT) 

£W    = EV) -E^i JHR.) + Sz.z^i^^ ! + /(R^.Rj.)) . (8) 

where E  is given by the equation 

[HCr,...^ ;R) + E ( f dr:EA(r;rl) - Vz fdr:wA(r. .R.;^)) 

+ S /dr;.drlWA(r.,rj;r:rj)] fC^...^ ) = EA(R) f (^ .. .rm )   (9a) 

where H is the usual hamiltonian for m  electrons in the field 

of m  fixed nuclei 

.'j  
..- -■ ■     

vW 4 
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m       ni„   z^     m 
n  "J     l6-   i 

mp        ^  1 

i=l  1   i>j 1J 

and where all one- and two-particle effective potentials are taken to be 

hermitian adiabatic approximates to the true potentials. Note also that 

all potential terms involving the m  nuclei are now written as local 

quantities thereby taking into account the previously mentioned fact 

that there are no exchange (i.e. nonlocal) terms in the potentials when 

nuclei are being considered. 

If we now collectively refer to these m  electrons and  m 

nuclei which have a fixed internuclear geometry as being system B , 

then (f*(R) is the change in energy resulting from the creation of system 

B in the vicinity (as measured by R ) of A . If R -»• » then 

/r->-(fn which is just the energy B itself. Therefore, the intermolecular 

•.oential of the system A-B as a function of the separation between 

A and B is 

VJ(R)    =    Ej(R) - Eg + VJ^R) dOa) 

where 

m m 
.A        ,^ v^B   ^A/D  N A    ^-B.B..A,n    „  ^ (10b) vsjnuc(R) = - EZ» riv * ftVf^i 

-'■ »*    4 
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and where 

-B 
a +  VZBZB      1 

B  '   tfn   [R^Rj (10c) 

-A, is just the electronic energy of isolated system    B    and where    E"(R) 
D 

is given by 

Wrv..rm  ;R) + f fdr'^ir^r'.) -   f   z^Cr^R ;r:)) 
i=l 

in. 

^E./dridr^^.r^rlrj)],^, V =  rA si*)^rv..rmJ      (10d; 

Therefore, given that we know E° and that we have available good 

A      A closed form adiabatic approximates for E  and W  our problem reduces 

to binding the solutions (or rather a particular solution) to (lOd), 

In the following section we will look at some ways of doing this. 
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C.        Determination of    E B 

A 
Our equation for ER is of the form 

(H + UA) fjl = EJ vj (Ha) 

where 

UA(r,...r ;R) = iKtlNr^rj)- EZJV^.RJ^)] 

me 
+  S/drldr/lr^r^rl.rj) 

*  A 

1=1     i>j '^ 1 J 
(lib) 

n 
where we note that H*  is an eigenfucntion of the htrmitian 'hamiltonian' 

A (H + U ) ana that H is the electronic hamiltonian for isolated system B 

If we now explicitly assume that U  is small compared to H (this of 

course was implicit in our derivation of U  in the first place) then 

U  can be regarded as being a small perturbation on H . As a consequence, 
/\ 

the solution, f- , to (11) which we seek should resemble the electronic 

wavefunction for isolated system B , ^ , and this wavefunctfon should 
D 

therefore provide us with a proper starting point determining ya    and 

EA 

1. First-Order Perturbation Treatment 

Projecting (11a) against vj: and normalizing fg to unity gives 



22 

E^ = <^|H + UVB> I  <^h'5> = 1 . (12a) 

whereas if f? is a self-consistent solution for isolated system B 

its energy is 

EB = ^B^l-^ ; ^B1^ = 1 • (12b) 

A If we assume that U  is a quite small perturbation to H then we can 
A 

solve for    En    using standard first-order perturbation theory to obtain 

E^    =    EB
0    +    <fB

0|UA|^> (13) 

so that our first-order perturbative expression for VR is simply 

VB * V8.nuc * ^luA|^ • f14' 

This of course is equivalent to assuming that the wavefunction for system 

B remains virtually unchanged when in the presence of A . 

In terms of the one- and two-particle density matrices, p? and p2 , 

associated with v? , (14) becomes 

VB = VB,nuc + rir
dr pV'^^r') + ^/d^d^ q

A
2(rj,.-)p°(r1 ,r2;r^ '). 

(15) 

If To is a single Slater determinant so that 

--*- J- 
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1°(rrr2;r|,r')    =    V2[p°(r1 ;r] )p°(r2-,rp - p°(r1 ;r')p°(r2;r^)]      (16a) 

with 

n     * 
P?(r;^,)    =     I    $.(r) ^.(r1) (16b) 

where {*.} are the n one-electron spin-orbitals comprising H^ 

then Vn takes on the form 

(17) 

A where the two-electron integrals over   q,?   >ire written in the stannard 

<1?1|12>    notation. 

If    ^p    cannot be written as a single Slater determinant but can 

be written as a linear combination of determinant:  involving    n    one-electron 

spatial  Orbitals    l«^}    then  (12b) can always he written ?s 

E°    -        E    DJ <$°|hl$°> +       E        Ü] <*y,\7^\^> (18) 
i,j 

.B    -       ^_  u.   „.in,.^ -i        -J^  <?i?jlr12lVV 

i    kl where    (D'^.D. .}    are fixed coefficients which depend on the precise form 

o A of   fn    and on orbital overlaps.    Since   U     is of the same form as    H 

and, like   H , is    spin independent (recall that isolated system   A   must 

be closed-shell) we can immediately write our first-order approximation 

for   Vg   as 

>  »ii> d- 



24 

where all operators and integrals are now explicitly takent to involve 

only spatial coordinates. Therefore, we can determine  ^olU \^D>    by 

using the general energy expression (18) but employing one- and two-electron 

integrals over the operators p  and q,p instead of the usual integrals 
1__ u 

over h and r^p • 

We could continue this perturbation treatment by going on to determine 

second-order and higher corrections. However we will stop here and next 

consider a self-consistent approach instead. 

2. Self-Consistent Treatment 

Let us now assume that while U  is a small perturbation to H 

it is not small enough to justify a simple first-order perturbation 

treatment. That is, we will now assume that i'  can still be taken to 

be functionally the same as y° but because of the presence of A the 

spatial orbitals themselves distort away from {$?} to a meaningful 

extent. The problem is then to determine these new orbitals {*.} . 

Since ¥„ is an eigenfunction of electronic motion satisfying (11) this 

can b2 done v\?riatiorially. That is, we can determine these new distorted 

orbitals by requiring that En be stationary with respect to changes in 

these orbitals. If fo»- simplicity (but not necessity) we assume that 

yB can be written as a hortree-Fock type wavefunction involving orthonormal 

- <--•! -L 
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spatial Orbitals (or orthonormal spin-orbitals for the case of an 

Unrestncted Hartree-Fock wavefunction) then (18) takes on the simple 

Roothaan form 

n n 
l    f. <$T|h|*T> + z  [a.. J.o^o + b4,.K.o.o] 

i=l    i1 ' i   .jj iJ *1-*j   iJ ^^j 
(20a) 

where 

i J 

^0,0 

i J 
:*0|K, |*.> 

J 

<»5iJtoi^ 

J1 *; 

i j 'r 12 

i j1 r 12 

$ . 4). > 

J 1 

(20b) 

(20c) 

and where {f.;a..;b..} are fixed coefficients (for the case of a multi- 

configurational wavefunction these coefficients are simply related to tne 

variationally determined configurational coefficients) which depend on 

the precise form of y" . Since ^    is being taken to have the same 

form as Yg and because of the similarities between H and U  mentioned 

above, we can immfidiately write our equation for ER as 

E f.<$iih |V + i  [a^ <*1*j|gl2l*i*j> 
+ b.j ^i^Ig^l^*!-] 

(21a) 

A      A 
where the operator h  and g1? are given by 

h + pA ; g^ 
1   ^ pr-+ q1? r12   i^ (21b) 

a d» sL 
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Therefore, C*.} and therefore Er can be determined usinrj standard 

basis set expansion (I.CA0) SCF techniques. The only difference is that 

instead of using the usual one- and two-electron integrals we must use 

A      A 
integrals over the operators h  and g,? instead. However, since 

these integrals serve only as imput this difference is transparent to 

whatever available SCF procedure we employ. 

3. Configuration Interaction Treatment 

For the sake of completeness it should be mentioned that since 

Vn can be variationally determined there is no need to stop at the SCF 

level and we could solve for this function as a Configuration Interaction 

(CI) problem. The only difference form a standard CI calculation is 

that instead of using the usual one- and two-electron integrals we must 

use integrals over the h  and g^2 operators defined in (21b). It 

should be pointed out however tha\ any solution for HC which differs 

significantly from fj? implies that for that solution U  can no longer 

be regarded as a small perturbation to H and in such a case the validity 

of the approximations made in our choice of U  would become subject 

to question. This of course also applies in our SCF treatment as well. 

D.   The Potentials 

A     A 
The one- and two-particle effective potentials E  and W 

appearing in our final equations in section II are hermitian adiabatic 

approximates to the true field theoretic potentials. As we haw  mentioned. 

 : : . .käs: A. 
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such potentials can be obtained in closed ab initio form using many-body 

theory within the framework of the RPA approximation and taking the 

adiabatic limits. However, while these potentials are tractable they are 

nonetheless quite complicated and their use would entail considerable 

computational effort. In view of the perturbative nature of our theory 

it is reasonable to expect that we could use potentials having simpler 

forms. Such simpler potentials can be obtained by making moment expansions 

of the RPA potentials and truncating these expansions in a physically 

meaningful manner [5]. When this is done, the resulting potentials can 

be cast in forms which are very similar to phenomenologically derived 

semi empirical potentials which have been used by other workers wich 

considerable success [6]. Therefore, it would seem that the use of com- 

plicated ab initio potentials is not warranted (although we do reserve 

the option to do so) and that we can take our potentials to have semi- 

empirical forms similar to those used by Delgarno and by Victor [6], 

namely 

/dr' Ar-) = -f^/dr' ^(r^) - ^«  W6{k|r|) 
2\r\' 

A 

2^6W8(k|r|) + (ao +a1 |r| + a2ir|2)e-k|ri 

(22a) 

and 

r A ^ (22b) 

Jdr^ dr' WH(r1,r2;r],rp =  -|-—g-V^k]^ | ^(kl^l ^ (cos Y12) 
rll lr2 

A 

|r   i^lTlT V^lDV^DV005 Y12) 

_iä! )L 
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where we have chosen our coordinate -.ystem to be centered on A which 

for simplicity we now take to be an atom having a nuclear charge of z 

—Y 

and where 

Wn(x) 

Y12 

Vx) 

A 

(a.) 

(l-e'x ) is a cutoff function 

angle between vectors r, and r^ 
f" h 

legendre polynomial of the £  degree 

dipole polarizability of A 

approximate quadrupole polarizability of A ^adjustable) 

aporoximately 1/2 r  where r  is the effective radius 

of A (adjustable) 

adjustable monopole parameters 

and 

Y*    (r-.r1) 
HF 

nA 
E 

1=1 
Ir-r'T 

is the static Hartree-Fock potential of A with {$.} being the nA 

spatial Hartree-Fock orbitals for the electrons in A . P  , is the 

permutation operator if r is an electronic coordinate whereas  Pr r, 

•^ »>« 4 
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if r is a nuclear coordinate. Note that all quantities are now purely 

A     A 
spatial and that T.      and W  are therefore explicitly spin independent. 

In (22^) the first term is simply the potential due to the nucleus 

of A and the second term is the static Hartree-Fock potential for the 

electrons in A occupying the spatial orbitals {$•} . The next two 

terms in (22a) are asymptotically correct induced d pole and quadrupole 

polarization potentials which die otT rapidly aJ short distances from A . 

The final term is an induced monopole term which serves as a short range 

correction potential. The terms in (22b) describe or-, asymptotically 

corre t dielectric potential which properly cancels out one-particle 

induced dipole and quadrupole polarizations of A due to two particles 

of the same charge when these particles are on opposite sides of A . 

ihat these potentials represent a significant simplif- .ation ever the 

ab initio potentials is clear in that our two-particle potential is 

strictly local and the only nonlocal term in tne one-particle potential 

is simply the usual Hartree-Fock exchange potential. However, despite 

their simplicity, potentials such as these have been used very success- 

fully for a variety of problems in the past and should therefore be quite 

adequate for our purposes. 

As it stands, (22b) is concise and to the point. However, one 

important property is obscured  This is that our two-particle potential 

can be written in terms of one-particle operators only. To see this 

we need only express " ?  angle y-ip i" terms of the spherical angles 

•"***» 4 
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for each vector. Thus, by makinq use of the exoansion 

P,(C0S Y12) P£(cos e^P^cos e2) + 2 E Mf P^ (cos e^P^cos e2) 

[cos rrxK cos m^o + sin m6.  sin m^] (24) 

where Mx) is an associated Legendre oolynomial, we find that (22b) 

can be rewritten as 

Jdr^  dr^ WA(r1,r2;r^rp 
i-1 

Q^r^Q^^) (25a) 

where 

Q^r) 

Q2ir) 

Qo(r) 

%ir) 

= ^/oj  Irl'^dclrDP^cos e) 

= "v/aj M"2W3(k|r|) pj(cos e) cos 

ad  M'^s^kl) P](COS e) sin 

VaS kr3W4(l<IH) P2(cor e) 

Q5(r)    =    1/3^/otJ |rr3W4(k|r|) PJ(COS 9) ens 

Q6(r) 

Q7(r) 

%{r) 

-    1/3^  |rr0Wr(k|r|) PJ,(cos 9) sin $ 

=    1/12-y/aJ  |rr3W4(k|r|)  P2(cos o) cos 2* 

=   1/12-y/c/ |rr\(k|r!) P2(cos e) sin 2<f> 

(25b) 

a -«-^ u_ 
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